Artikel
Zo zet je data driven marketing succesvol in
Haal meer rendement uit je data
Echt data driven marketing succesvol maken, is een grote uitdaging waar veel merken voor staan. De vakbladen staan vol met veelbelovende data toepassingen. Maar als we eerlijk zijn, hebben we allemaal een beetje data-faalangst en struggelen we hoe we echt optimaal waarde uit data kunnen halen. Paradoxaal genoeg zijn dit merken die de beste datatools en teams al in huis hebben...
Om met een positieve noot te beginnen - veel merken hebben enorme stappen gezet als het gaat om het implementeren van data gedreven marketing. De wens is omgezet naar executie: data teams zijn opgezet en ook de systemen zijn in huis gehaald om succesvol data online en offline te verzamelen, te ontsluiten en te verwerken. Merken krijgen zo steeds meer zelf de touwtjes in handen en hebben waardevolle kennis over hun klanten en prospects. Vaak zetten zij deze in voor marketing activatie - het 1 op 1 bereiken en bewegen van consumenten via online en offline kanalen en/of het vergaren van diepgaande inzichten in dashboard om zo beter te kunnen begrijpen.
So far so good zou je zeggen, maar de laatste stap in de data roadmap blijkt het lastigst en dat is het rendement halen uit die data. Ik spreek veel met merken en ik krijg keer op keer terug dat zij het gevoel hebben dat ze niet optimaal die data en inzichten in de praktijk inzetten.
Hoe komt dat? Ik denk dat er een aantal misvattingen is omtrent data driven marketing die ten grondslag liggen van deze observatie.
1. Data zijn nooit perfect, deal with it
De eerste misvatting is meteen de meest hardnekkige - we willen graag perfecte data hebben maar perfecte data bestaan niet. We verzamelen data over menselijk gedrag, percepties en motieven. Maar niets is zo complex te verklaren als menselijk gedrag. Data zijn een middel om dit gedrag te verklaren en te voorspellen. Als menselijk handelen moeilijk te meten is, dan is het ook onmogelijk om perfecte data te verzamelen.
2. Elke data euro verdien je niet direct terug
We willen allemaal graag na die gemaakte data investering minstens zoveel terugverdienen. Het liefst willen we daar een numerator aankoppelen. Fijn voor de CFO, maar ook om aan te tonen waarom het nodig is om data teams op te zetten. Op zoān moment wordt er vanuit gegaan dat die data euro zich 1 op 1 terugverdient en dat het effect direct is terug te zien in de P&L. Data investeringen moet je echter op en aan andere manier interpreteren dan kijken naar lineaire effecten, anders wordt het op een verkeerde manier afgerekend. Hoe het wel moet, licht ik later in dit artikel toe.
3. Beter iets dan niets
In het verlengde van de eerste misvatting: gebruik een āglas halfvolā en niet een āglas half leegā visie als het gaat om het verwaarden van data. Ik zie nog wel eens de neiging dat data afdelingen stilstaan bij wat nog niet goed werkt. Dit leidt er toe dat die ātrein vaak niet gaat rijdenā en dat men blijft steken in het ontwikkelproces. Het is belangrijk om ook al met beperkte data aan de slag te gaan en use-cases op te bouwen, ook al is dit nog niet perfect. Zo doe je ervaringen op en maak je āvliegurenā.
Ook zeer belangrijk voor interne stakeholdermanagement: laat zien wat er uit data te halen valt om zo de rest van de organisatie te inspireren.
4. De kloof tussen data en sales/marketing
Deze laatste is niet zozeer een misvatting, het is meer een observatie. Veel merken hebben een apart data team die vaak als aparte silo in de organisatie staat. Elders zijn de marketing of brand management teams die idealiter gebruik gaan maken van die datakennis.
De praktijk is weerbarstig: marketeers/brand managers (die vaak in de frontlinie staan) hebben 1) vaak beperkte datakennis en daarom is het voor hen lastig toe te passen; 2) de datamogelijkheden worden gezien als afleiding van de daily business en 3) de praktische relevantie voor deze groep is vaak onduidelijk. Kortom: er is een kloof tussen teams en veel organisaties struggelen om een juiste brug te slaan tussen data teams en de teams die er echt mee aan de slag zouden moeten gaan. Eigenlijk doe je het allemaal voor deze groep!
De rode draad is dus dat een succesvolle data strategie meer betreft dan het hebben van een grote zak met geld. Data gedreven werken is namelijk een organisatieverandering - de hele organisatie moet klaar zijn om data gedreven te werken; van sales tot aan legal en development.
Onderstaand Data Maturity Model van VIA Nederland (voorheen IAB Nederland) laat dit mooi zien. Dit onderstreept dat data een enabler is en geen doel op zich. Het is een middel dat de organisatie moet omarmen. Te vaak worden data echter als doel op zich gezien. Dit laat ook meteen zien dat het tijd kost. Kon de mens meteen lopen? Hadden we meteen al elektrisch aangedreven autoās? Data zijn, met andere woorden, onderdeel van de organisatie-evolutie.
Om nog even terug te komen op de tweede misvatting: het succes van een datastrategie vertaalt zich daarom in een uplift op metrics op organisatieniveau in plaats van een 1 op 1 data ROI.
Now what: hoe haal ik meer rendement uit mijn data?
De komende tijd zal ik op Grow tips and tricks delen hoe je de volgende stap zet - zowel voor merken die net zijn begonnen met hun datastrategie als merken die al ver zijn. Dat doe ik middels video talks maar ook een podcast genaamd āData&ā waarin ik met inspirerende gasten over dit topic doorpraat en hun bevindingen uitvraag. Ik deel alvast twee belangrijke tips die vaker terug zullen komen.
Tip 1: neem een data-creatieveling aan
Zoals genoemd, is er vaak een kloof tussen data teams die voor de juiste enablement zorgen en de teams die met de datamogelijkheden aan de slag moeten gaan. Het is belangrijk dat er een team is die de brug slaat tussen data en commercie/de praktijk. Deze professionals hebben veel kennis van data en techniek, maar weten ook wat er leeft in business en de behoeften die er zijn. Ik noemde deze nieuwe functie: āDatacreatievelingā - iemand die de enorme mogelijkheden van data naar concrete acties vertaalt.
Tip 2: gebruik data insights als competitive advantage
Uiteindelijk zijn data niets anders dan informatie en kennis. Gebruik de kennis die jij verzamelt middels de datastrategie om een competitive advantage te hebben richting jouw externe stakeholders. Met name voor B2B gerichte organisaties is dit een enorme kans. Door data inzichten te delen die jouw klant of prospect nog niet kent, krijg je een inhoudelijker gesprek en ben je interessanter in de markt. Gebruik data-inzichten dus als conversation piece en je zult zien dat je beter in kunt spelen op klantbehoeften.